A review of the Japanese Kateretidae fauna
(Coleoptera: Cuculoidea)

Sadatomo HISAMATSU

Entomological Laboratory, Faculty of Agriculture, Ehime University, Tarumi 3–5–7, Matsuyama, 790–8566 Japan; e–mail: insect@agr.ehime-u.ac.jp

Abstract. The family Kateretidae of Japan is revised. Nine species belonging to 6 genera are recognized, including: Kateretes japonicus Hisamatsu, 1985, K. takagii S-T. Hisamatsu, 2006, Platamartus jakowlewi Reitter, 1892, Heterhelus (Heterhelus) scutellaris (Heer, 1841), H. (Heterhelus) morio (Reitter, 1878), H. (Boreades) solani (Heer, 1841), Sibirhelus corpulentus (Reitter, 1900), Brachypteratus urticae (Fabricius, 1792), and Brachypterolus pulicarius (Linnaeus, 1758). Heterhelus morio, which was synonymized under H. scutellaris by KIREJTSHUK (1989), is found to be a valid species, and is herein resurrected. Platamartus jakowlewi is newly recorded from Japan. Brachypterolus shimoyamai Hisamatsu, 1985, syn. nov., is synonymized under Brachypterolus pulicarius. Dorsal habitus images, illustrations of male and female genitalia, and other important diagnostic characters are provided for all species. A key for identification of all Japanese taxa is also provided.

Key words. Coleoptera, Kateretidae, taxonomy, new synonym, new record, key, Japan, Palaearctic Region

Introduction

The family Kateretidae, belonging to the superfamily Cuculoidea, is mainly distributed in the Holarctic Region, and comprises about 95 species within 14 genera worldwide (JELÍNEK & CLINE 2010). Both larval and adult Kateretidae are anthophagous: the larvae are monophagous or oligophagous, while adults are more generalized feeders, occurring on true host plants only during mating and ovipositing periods; otherwise, they feed on a broader assortment of flowering plants (JELÍNEK & CLINE 2010).

Adult kateretids are flower visiting insects, which are often used in population ecology studies or other ecological studies (ISHIDA 1996, GRUBB et al. 2002). Moreover, some kateretid species are agricultural pests; for example, Brachypterolus vestitus Kiesenwetter, 1850 and
B. antirrhini Murray, 1864 are considered minor pests of Antirrhinum spp. (snap dragons) cultivation in Europe (Kirk-Spriggs 1996). However, correct identification of taxa is extremely important for ecological studies and pest control. The objectives of this study are to contribute to our taxonomic knowledge and develop techniques for correct identification of Japanese Kateretidae.

Materials and methods

The present study is mainly based on specimens from the Ehime University Museum, Japan (EUM) and the author’s private collection. Lectotypes of *Heterhelus japonicus* (Reitter, 1878), and *H. morio* (Reitter, 1878) are deposited in Museum für Naturkunde der Humboldt-Universität, Berlin, Germany (ZMHB).

External structures were observed using a Leica S8APO stereoscopic microscope with magnification 10× to 80×, and small body parts, such as tarsal claw or antenna were removed from the body with fine forceps and observed under an Olympus BH-2 optical microscope with magnification 40× to 400×. Intact adult specimens were placed in hot water for 1–2 hours for softening, subsequently male and female genitalia were removed with fine forceps, observed under the microscopes, and then photographed. Finally, the genitalia were mounted in Euparal on small cover glass slips (5×10 mm).

Dorsal habitus images were acquired with a Nikon Digital Sight DS-Fi1 CCD camera attached to a Leica S8APO stereoscopic microscope. Post-acquisition images were combined with Helicon Focus 4.80 Lite (Helicon Soft Limited) automontage software. Other small body parts, such as antennae, tarsal claws, abdominal sternite or male and female genitalia, were photographed with the CCD digital camera mentioned above, which was attached to an Olympus BH-2 optical microscope. These images were then combined as above. Line drawings were produced by tracing over the photographic images. Upon completion of the drawings, the images were scanned by CanoScan 4400F, and plates constructed using Adobe Photoshop 7.0.

All measurements were made with an ocular micrometer. The measurements include: pronotal length as measured along the midline; pronotal width as measured at greatest width; elytral length as measured at greatest length; elytral width as measured at combined greatest width; body length as measured from apex of mandibles to apex of abdominal tergite VII or VIII. Morphological terms follow Lawrence et al. (2010). The identity of genera mainly follows Kirejtshuk (1992). Plant names refer to Yonekura & Kajita (2003).

Abbreviations used in the descriptions are as follows:

- **HW**: greatest width of head, including eyes;
- **L7**: greatest length of seventh abdominal sternite;
- **LP**: greatest length of paramere;
- **W7**: greatest width of seventh abdominal sternite;
- **WP**: greatest width of paramere.

Exact label data are cited for holotypes. Label lines are separated by a slash (/), and different labels by a double slash (//).
Taxonomy

Kateretidae Erichson, 1846

Type genus. *Kateretes* Herbst, 1793 (subsequent designation by ICZN 1999).

Diagnosis. Length 1.3–6.0 mm. Head prognathous; subantennal grooves and subantennal ridges absent; frontoclypeal suture short or absent; maxilla with galea and lacinia; antennae 11-jointed, last 2 or 3 segments forming a loose club (without club in *Sibirhelus* Kirejtshuk,

Bionomics. Both larval and adult Kateretidae are anthophagous, developing in flowers of angiosperms (JELÍNEK & CLINE 2010). Larvae are monophagous or oligophagous, typically requiring specific plants for their development.

Distribution. Kateretidae comprises about 95 species within 14 genera worldwide (JELÍNEK & CLINE 2010). There are two described fossil genera, *Eoceniretes* Kirejtshuk & Nel, 2008 from Lowermost Eocene French amber and *Lebanoretes* Kirejtshuk & Azar, 2008 from

Fig. 2. Habitus and labels of Kateretidae spp. A–B – *Heterhelus* (*Heterhelus*) *morio* (Reitter, 1878): A – lectotype, male; B – ditto, labels; C – *Heterhelus* (*Boreades*) *solani* (Heer, 1841), male (Hokkaido); D – *Sibirhelus corpulentus* (Reitter, 1900), male (Iwate Pref.); E – *Brachypterus urticae* (Fabricius, 1792), male (Hokkaido); F–G – *Brachypterolus shimoyamai* Hisamatsu, 1985: F – holotype, male; G – ditto, labels. Scale bars = 1.0 mm.

Note. Detailed descriptions of the family were recently provided (e.g., KIREJTSHUK 1992, AUDISIO 1993, JELÍNEK & CLINE 2010). There are some comprehensive studies on Palaearctic fauna (KIRK-SPRIGGS 1996, SPORNRAFT 1967, KIREJTSHUK 1992, AUDISIO 1993), and a comprehensive treatment of the New World fauna is currently underway (Cline & Audisio, pers. comm. 2010). Some larvae were illustrated by BÖVING & CRAIGHEAD (1931), HAYASHI (1978), and CLINE & AUDISIO (unpubl.).

Key to Kateretidae genera of Japan

1. Tarsal claws not dentate or slightly dilated at base (Figs. 3J, 5E, 9E). Apical segment of maxillary palpus slender (Figs. 3I, 5F, 8G, 9F). Ovipositor with styli (Figs. 3D, 4G, 5D, 6F, 7G, 8D, 9D). ... 2
 - Tarsal claws distinctly dentate at base (Figs. 10F, 11H). Apical segment of maxillary palpus enlarged (Figs. 10E, 11G). Ovipositor without styli (Figs. 10G, 11D). .. 5
2. Abdominal sternite III or III–V with tuft of setae in the middle in both sexes (Figs. 5H, 9K). Ovipositor with short styli (Figs. 5D, 9D). ... 3
 - Abdominal sternite III or III–V without tuft of setae. Ovipositor with long styli (Figs. 3D, 4G, 6F, 7G, 8D). ... 4
3. Color reddish-yellow to dark brown. Lateral margins of pronotum smooth. Male protibia strongly arcuate (Figs. 2D, 9I). Abdominal sternite III with tuft of setae in middle (Fig. 9K). ... Sibirhelus Kirejtshuk, 1989
 - Color black. Lateral margins of pronotum distinctly serrate (Fig. 5G). Male protibia straight. Abdominal sternites III–V with tuft of setae in middle (Fig. 5H).
 ... Platamartus Reitter, 1892
4. Pronotum rounded at posterior angles (Fig. 3H). Dorsal pronotal disc surface with coarse, large punctures, larger than eye-facet. Abdominal tergite VIII in males concealed.
 - Pronotum angulate at posterior angles (Figs. 6H–N, 7I, 8F). Dorsal pronotal disc surface with dense, small punctures, smaller than eye-facet. Abdominal tergite VIII in males exposed. ... Heterhelus Jacquelin du Val, 1858
5. Dorsal pronotal disc surface with sparse punctures, and sparsely covered with short setae (Fig. 2E). Pronotum narrower than elytra at base; posterior angles obtuse (Fig. 10H); hind margin straight. ... Brachypterus Kugelann, 1794
 - Dorsal pronotal disc surface with dense punctures, and densely covered with long setae (Fig. 2F). Pronotum as wide as elytra at base; posterior angles angulate (Fig. 11F); hind margin sinuate. ... Brachypterolus Grouvelle, 1913
Genus *Kateretes* Herbst, 1793

Type species. *Dermestes pedicularius* Linnaeus, 1758, subsequent designation by Hope (1840).

Diagnosis. Body oval, rather flattened. Pronotum transverse; disc with coarse large punctures, larger than eye facet; posterior angles rounded; basal margin nearly straight or with slight curvature. Male abdominal tergite VIII concealed, narrowing at apex. Tarsal claws simple. Ovipositor with short styli.

Bionomics. Members are often attracted to the flowers of *Carex* (Cyperaceae) and *Juncus* (Juncaceae) (Jelinek & Cline 2010).

Distribution. Ten species belonging to this genus are distributed in the Palaearctic Region (see Hisamatsu 1985, S-T. Hisamatsu 2006, Jelinek & Audisio 2007), except *K. ornatus* Jelinek, 1978, which is distributed in the Oriental Region (India) (Jelinek 1978), and *K. scissus* Parsons, 1943 from the Nearctic region (Parsons 1943).

Note. Palaearctic species were treated by several authors (Kirk-Spriggs 1996, Spornraft 1967, Kirejtshuk 1992, Audisio 1993). Japanese species were studied by S-T. Hisamatsu (2006). The North American species is currently being revised, along with the other Kateretidae fauna of the region (Cline & Audisio, pers. comm.).

Key to Japanese Kateretes species

1. Scape of male antennae enlarged, robust (Fig. 4D). Body bicolored, black and ochreous. Distribution: Japan (Hokkaido). ... *K. takagii* S-T. Hisamatsu, 2006
 – Scape of male antennae elongate (Fig. 3G). Body unicolored, luteous. Distribution: Japan (Honshū). ... *K. japonicus* Hisamatsu, 1985

Kateretes japonicus Hisamatsu, 1985

(Figs. 1A–B, 3)

Diagnosis. Body coloration uniformly reddish-yellow (Fig. 1A). Scape of male antennae strongly enlarged and elongate (Fig. 3G). Prosternal process subparallel-sided. Protibiae 2.40–2.79 times as long as wide (n = 11).

Redescription. Length 1.8–2.4 mm (2.4 mm in holotype).

 Male. Body (Fig. 1A) oval, rather flattened, shining, covered with sparse yellowish setae. Coloration uniformly reddish-yellow.

 Head densely punctate, punctures larger than eye-facet, separated by < 1 diameter; inter-spaces slightly reticulate or smooth. Frontoclypeal suture incomplete, short and deep. Front margin of clypeus with medial arcuate emargination. Mandibles strongly angled toward midli-
Antennae (Fig. 3G) stout, 1.32–1.44 times as long as HW (n = 3); scape strongly enlarged and elongate; pedicel enlarged, pyriform to spherical; approximate ratio of each segment (n = 1) is 3.21 : 2.14 : 1.86 : 1.43 : 1.29 : 1.21 : 1.29 : 1.00 : 1.50 : 1.57 : 2.29.

Pronotum (Fig. 3H) convex, strongly transverse, 1.66–1.70 times as wide as long (n = 3); lateral margins feebly serrate, widest at basal 1/3 then converging both anteriorly and posteriorly; anterior angles not prominent; posterior angles broadly rounded; anterior margin nearly straight or with slight curvature, not bordered; basal margin bordered; punctures on disc about as large as those on head, densely distributed, separated by ≤ 1 diameter; interspaces slightly reticulate. Scutellum subtriangular, apex rounded.

Elytra conjointly 1.07–1.08 times as long as wide (n = 3), 1.87–1.94 times as long as pronotum (n = 3), subparallel-sided; punctures on disc dense, slightly larger and denser than those on pronotum; interspaces smooth. Abdominal tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex rounded. Abdominal tergite VIII not externally visible.

Fig. 3. Kateretes japonicus Hisamatsu, 1985. A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – ovipositor; E – right protibia; F – right antenna of female (segments 1–3); G – right antenna of male; H – pronotum; I – left maxillary palpus; J – tarsal claw (right foreleg). A–J = Nagano Pref., Tokugo Pass.
Prosternum (excluding prosternal process) slightly shorter than greatest width of protibia, 0.41 times as long as mesoventrite, 0.29 times as long as metaventrite (n = 1); prosternal process slender, subparallel-sided. Metaventrite convex, metathoracic discrmen only in basal 1/3; disc densely punctate, punctures smaller than those on head. Inter-mesocoxal distance separated by 3.07 times width of inter-procoxal distance. Inter-metacoxal distance separated by 6.57 times width of inter-procoxal distance. Abdominal sternites shining; approximate ratio of length of abdominal sternites III–VII (n = 1) is 2.94 : 1.00 : 1.06 : 1.56 : 1.69. Legs flattened; protibiae (Fig. 3E) rather short, 2.40–2.79 times as long as wide (n = 11); claws (Fig. 3J) more or less expanded at base.

Male genitalia weakly sclerotized; tegmen with parameres (Fig. 3A) symmetrical, wide and long (L : W = 2.17); median lobe (Fig. 3B, 3C) slender, slightly arcuate inward in lateral aspect.

Female. First and second segment of antennae (Fig. 3F) not strongly enlarged. Ovipositor (Fig. 3D) with coxites deeply incised at apex with slightly outcurved lobes, styli short but distinct.

Bionomics. This species is associated with flowers of *Veratrum album* L. subsp. *oxysepalum* (Turcz.) Hultén (Melanthiaceae). According to the label data, 88 specimens were collected from flowers at the same time. In spite of that, I cannot hypothesize *Veratrum album* subsp. *oxysepalum* as the host plant, as the species may only be an adult feeding plant. Similar case is known for the European *Kateretes pedicularius* (Linnaeus, 1758) which larva develops in flowers of *Carex* (Cyperaceae) in the spring (April–May), but the adults feed on flowers of *Filipendula ulmaria* (L.) Maxim. (Rosaceae) in the high and late summer (July–September) (Jelínek, pers. comm.).

Kateretes takagii S-T. Hisamatsu, 2006

(Figs. 1C–D, 4)

Diagnosis. Body coloration black; antennae, mouthparts, clypeus, explanate lateral margins of pronotum, elytra (except for black obtriangular patches from humerus to basal 1/2 of suture), and legs reddish brown (Fig. 1C). Scape of male antennae strongly enlarged and widest at middle (Fig. 4D). Prosternal process narrowing to apex. Protibiae 2.83–3.02 times as long as wide (n = 4).

Redescription. Length 2.2–2.6 mm (2.6 mm in holotype).

Male. Body (Fig. 1C) oval, rather flattened, strongly shining, sparsely covered with yellowish setae. Coloration black; antennae, mouthparts, clypeus, explanate lateral margins of pronotum, elytra (except for black obtriangular patches from humerus to basal 1/2 of suture), and legs reddish brown.

Head densely punctate, punctures larger than eye facet, separated by < 1 diameter; inter-spaces finely reticulate. Frontoclypeal suture incomplete, distinctly visible. Front margin of
clypeus with medial arcuate emargination. Labrum broadly notched at middle. Mandibles strongly bent inward. Antennae (Fig. 4D) stout, 1.56 times longer than HW (n = 1); scape strongly enlarged, widest at middle; pedicel moderately enlarged, pyriform to spherical; approximate ratio of each segment (n = 1) is 3.71 : 2.00 : 1.71 : 1.29 : 1.14 : 1.29 : 1.14 : 1.00 : 1.43 : 1.43 : 2.14.

Pronotum strongly transverse, 1.65–1.81 times as wide as long (n = 3); lateral margins narrowly explanate, weakly serrate, widest at basal 1/3; anterior angles not prominent; posterior angles broadly rounded; anterior margin nearly straight or with slight curvature, not bordered; basal margin bordered; punctures on disc about as large as those on head, separated by ≤ 1 diameter; interspaces finely reticulate.

Elytra conjointly 1.10–1.16 times as long as wide (n = 3), 1.97–2.09 times as long as pronotum (n = 3), subparallel-sided; punctures on disc larger and denser than those on pronotum; interspaces smooth. Abdominal tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex rounded. Abdominal tergite VIII not externally visible.

Prosternum (excluding prosternal process) slightly shorter than greatest width of protibia, 0.46 times as long as mesoventrite, 0.33 times as long as metaventrite (n = 1); prosternal process slender, narrowing to apex. Mesoventrite depressed below the level of the metaventrite, rugose, unpunctate. Metaventrite convex, metathoracic discrimen only in basal 1/3; disc slightly rugose, covered with sparsely setae; punctures on disc sparse, apparently smaller than those on head, separated by 2 to 3 times a diameter. Inter-mesocoxal distance separated by 2.31 times width of inter-procoxal distance. Inter-metacoxal distance separated by 5.77 times width of inter-procoxal distance. Abdominal sternites shining; approximate (n = 1) of length of abdominal sternites III–VII (n = 1) is 2.88 : 1.13 : 1.00 : 1.63 : 2.38. Legs flattened; tibiae dilated apically; protibiae (Fig. 4F) 2.83–3.02 times as long as wide (n = 4); tarsal claws more or less expanded at base.

Male genitalia sclerotized; tegmen (Fig. 4A) with parameres symmetrical, wide and long (L : W = 2.12 (n = 1)), interparameral lobe sclerotized, sharply pointed; apex of median lobe (Fig. 4C) moderately curved inward in lateral aspect.

Female. Antennal segments I–II less strongly enlarged than those of male. Ovipositor similar in shape to K. japonicus, styli distinct.

Bionomics. Unknown.

Distribution. Japan (Hokkaido) (S-T. HISAMATSU 2006).

Genus Platamartus Reitter, 1892

Type species. Platamartus jakowlewi Reitter, 1892, by monotypy.

Diagnosis. Body elongate oval, flattened. Male antennae distinctly longer than those of female. Pronotum transverse, lateral margins distinctly serrate; disc with coarse and large punctures, larger than eye facet; posterior angles prominent; anterior angles not prominent; basal margin nearly straight or with slight curvature. Prosternum (excluding prosternal process) longer than mesoventrite. Male abdominal tergite VIII externally visible. Legs long and slender; tarsal claws simple. Ovipositor with short styli.

Bionomics. Platamartus jakowlewi was collected from flowers of Carex dispalata Boott (Cyperaceae) (see Bionomics under P. jakowlewi).

Distribution. Species are known from the Russian Far East and are represented by two species (KIREJTSUHOK 1992).

Note. Siberian species were studied by KIREJTSUHOK (1992).

Platamartus jakowlewi Reitter, 1892

(Figs. 1E–F, 5)

Platamartus jakowlewi Reitter, 1892: 151. **Type locality:** Ostsibirien [= East Siberia].

Platamartus jakowlewi: JELÍNEK & AUDISO (2007: 458) [catalogue].

Diagnosis. Body coloration black; mouthparts and legs reddish brown; in male, antennal segments 1–3 reddish-brown and segments 4–8 gradually becoming darker apicad, in female
antennal segments 1–8 reddish-brown; antennal club black in both sexes. Abdominal sternites III–V with tuft of setae in the middle.

Redescription. Length 2.5–3.5 mm.

Male. Body (Fig. 1E) elongate oval, rather flattened, strongly shining; dorsal disc with a long, grayish-yellow setae. Coloration black; mouthparts and legs reddish-brown; antennal segments 1 to 3 reddish-brown; segments 4–8 gradually becoming darker toward apical segments; segments 9–11 black.

Head densely punctate, punctures on disc larger than eye-facet, separated by < 1 diameter; interspaces finely reticulate. Frontoclypeal suture incomplete, faintly visible. Front margin of clypeus with medial arcuate emargination. Labrum broadly notched at middle. Mandibles slightly bent inward. Antennae elongate, 2.25 times as long as HW (n = 2); approximate ratio of each segment (n = 1) is 2.50 : 1.00 : 1.70 : 1.40 : 1.50 : 1.40 : 1.40 : 1.20 : 1.20 : 1.20 : 1.50.

Fig. 5. *Platamartus jakowlewi* Reitter, 1892. A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – ovipositor; E – tarsal claw of right foreleg; F – left maxillary palpus; G – pronotum; H – abdominal sternites; I – right antenna, female; J – ditto, male. A–J – Tochigi Pref., Watarase-yûsuichi.
Pronotum transverse, 1.40–1.41 times as wide as long (n = 2); lateral margins explanate, distinctly serrate, strongly projecting at mid-length, then abruptly converging both anteriorly and posteriorly; anterior corner rounded; posterior corner sharply prominent; anterior margin nearly straight or with slight curvature, clearly bordered; basal margin gently arcuate, distinctly bordered; punctures on disc about as large as those on head, separated by ≤1 diameter; interspaces reticulate.

Elytra conjointly 1.03–1.11 times as long as wide (n = 2), 1.60–1.72 times as long as pronotum (n = 2), widest at mid-length; punctures on disc larger and denser than those on pronotum, separated by <1 diameter; interspaces smooth. Abdominal tergite VI partially exposed. Abdominal tergite VII fully exposed, apex truncate. Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) remarkably long, 1.20 times as long as mesoventrite (n = 1), 0.81 times as long as metaventrite (n = 1); prosternal process subparallel-sided. Mesoventrite feebly depressed below the level of the metaventrite, apical margin between inter-mesocoxa straight. Metaventrite convex, shining, metathoracic discs in basal 1/2; disc with sparse punctures, separated by 1-2 diameter at middle, punctures on disc becoming denser laterally. Inter-mesocoal distance separated by 2.50 times width of inter-procoxal distance. Inter-metacoxal distance separated by 2.83 times width of inter-procoxal distance. Abdominal sterites III–V (Fig. 5H) with tuft of setae in middle; approximate ratio of length of abdominal sterites III–VII (n = 1) is 2.14 : 1.00 : 1.00 : 1.57 : 3.05. Legs long and slender; base of tarsal claws (Fig. 5E) more or less enlarged.

Male genitalia sclerotized; tegmen (Fig. 5A) with parameres asymmetrical, bearing long setae at apex; interparameral lobe broadly rounded; apex of median lobe (Fig. 5C) bluntly rounded in lateral aspect.

Female. Antennal flagella reddish-brown, club black; antennae (Fig. 5I) distinctly shorter than those of male, 1.25–1.40 times as long as HW (n = 3); approximate ratio of each segment (n = 1) is 2.30 : 1.40 : 1.60 : 1.40 : 1.10 : 1.10 : 1.10 : 1.00 : 1.70 : 1.60 : 2.10. Apical margin of abdominal tergite VII rounded. Ovipositor (Fig. 5D) deeply bifid, styli small.

Variability. Kirejtshuk (pers. comm.) notes that the tufts of setae on abdominal sterites III–V are frequently reduced in Siberian specimens.

Bionomics. This species was collected from the flowers of Carex dispalata Boott (Cyperaceae), and in syntopy with Sibirhelus corpulentus in spring.

Distribution. Japan (Honshū), new record; Russia (East Siberia) (JELÍNEK & AUDISIO 2007).

Genus Heterhelus Jacquelin du Val, 1858

Type species. Cercus sambuci Erichson, 1843 (= Heterhelus scutellaris (Heer, 1841)) (original designation).

Diagnosis. Body oval, convex dorsally. Pronotum transverse, projecting at mid-length or uniformly rounded lateral margins; disc with punctures smaller than eye facet; posterior angles obtusely angulate; basal margin nearly straight or with slight curvature. Male abdominal tergite VIII externally visible. Tarsal claws simple. Ovipositor with long or short styli.

Distribution. Seven species are known worldwide. They are distributed in the Nearctic, Palaearctic, and Oriental Regions (S-T. Hisamatsu & Lee 2007, Jelínek & Cline 2010).

Note. Palaearctic species were treated by several authors (Sporrafft 1967, Kirejtshuk 1992, Audisio 1993, Kirk-Spriggs 1996). Nearctic species were studied by Parsons (1943), and are currently under revision (Cline & Audisio, pers. comm.). Boreades Parsons, 1943 was synonymized under Heterhelus (Audisio 1993, Jelínek & Audisio 2007). S-T. Hisamatsu & Lee (2007) described Taiwanoheterhelus S-T. Hisamatsu & Lee, 2007 as a subgenus of Heterhelus, and treated Boreades as a valid subgenus of Heterhelus as well.

Key to subgenera and species of Japanese Heterhelus

1 Labrum shallowly notched. Antenna with distinct 3-segmented club (Fig. 8E). Pronotum strongly convex. Parameres of male genitalia abruptly bent inward at mid-length (Fig. 8A). Head dark brown, always darker than elytra. Subgenus Boreades Parsons, 1943.

– Labrum deeply notched. Antenna with indistinct 3-segmented club (Figs. 6O, 7D). Pronotum feebly convex. Parameres of male genitalia regularly arcuate inwards (Figs. 6A, 6D, 7A, 7E). Head always the same color as elytra. Subgenus Heterhelus Jacquelin du Val, 1858.

2 Body uniformly black; sides of pronotum regularly arcuate, never angulate; parameres of male genitalia short and wide (LP/WP = 2.1 (n = 1)) (Figs. 7A, 7E); apex of median lobe bluntly rounded in lateral aspect (Figs. 7C, 7F); base of ovipositor pigmented (Fig. 7G).

– Body reddish-yellow to blackish; sides of pronotum regularly arcuate or strongly angulate; parameres of male genitalia long and slender (LP/WP = 3.1 (n = 1)) (Figs. 6A, 6D); apex of median lobe sharply acuminate in lateral aspect (Figs. 6C, 6E); base of ovipositor not pigmented (Fig. 6F).

Subgenus Heterhelus Jacquelin du Val, 1858 sensu stricto

Heterhelus (Heterhelus) scutellaris (Heer, 1841)

(Figs. 1G–H, 6)

Cateretes scutellaris Heer, 1841: 412. Type locality: Martygni im Wallis [Switzerland].

Heterhelus (Heterhelus) scutellaris: S-T. Hisamatsu & Lee (2007: 384) [list].

Cercus sambuci Erichson, 1843: 229. Type locality: Germany. Synonymized by Ganglbauer (1889: 451) with Cateretes scutellaris Heer.

Cercus sambuci: Erichson (1845: 127) [redescription, note]; Sturm (1844: tab. CCLXXXIX, fig. c. C) [figure]; Sturm (1845: 9) [redescription, note]; Redtenbacher (1849: 162) [in key]; Redtenbacher (1858: 323) [in key].

Cercus (Heterhelus) sambuci: Murray (1864: 234) [redescription, note]; Marsuel (1885: 24) [redescription].

Cercus (Heterhelus) longipennis Murray, 1864: 234. Type locality: Dauria meridionalis [= Russia, Transbaikalia]. Synonymized by Kirejtshuk (1989: 146) with Cateretes scutellaris Heer.
Cercus (Heterhelus) longipennis: MARSEUL (1885: 25) [redescription]; KIREJTSHUK (1989: 146) [lectotype designation and synonymy].

Cercus longipennis: GEMMINGER & HAROLD (1868: 803) [catalogue].

Heterhelus longipennis: GROUVELLE (1913: 15) [catalogue].

Amartus (Heterhelus) japonicus Reitter, 1878: 166. **Type locality**: Japonia [= Japan]. Synonymized by KIREJTSHUK (1989: 146) with Cateretes scutellaris Heer.

Amartus (Heterhelus) japonicus: KIREJTSHUK (1989: 146) [lectotype designation and synonymy].

Heterhelus japonicus: REITTER (1884: 258) [in key]; REITTER (1885: 104) [list]; GROUVELLE (1913: 15) [catalogue]; HAYASHI (1978: 4) [description of larva].

Amartus (Heterhelus) angusticollis Reitter, 1878: 167. **Type locality**: Japonia [= Japan]. Synonymized by HISAMATSU (1979: 247) with Amartus (Heterhelus) japonicus Reitter.

Amartus (Heterhelus) angusticollis: HISAMATSU (1979: 247) [syndonym].

Heterhelus angusticollis: REITTER (1884: 258) [in key]; REITTER (1885: 104) [list]; GROUVELLE (1913: 15) [catalogue]; JELINEK & AUDISO (2007: 458) [catalogue].

Diagnosis. Body coloration fully reddish-yellow to dark brown except reddish brown mouthparts, antennae and legs. Antennae with almost 2-segmented club. Lateral margins of pronotum variable in shape; distinctly projecting at mid-length or uniformly rounded. Abdominal sternite VII rather long, W7/L7 = 2.29, n = 4). Parameres of male genitalia slender and long (LP/WP = 3.10 (n = 1)); apex of median lobe (Figs. 6C, 6E) sharply acuminate in lateral aspect. Ovipositor of female genitalia unpigmented in basal part, with long styli.

Redescription. Length 2.2–3.1 mm.

Male. Body (Fig. 1G) oval, convex, dully shining, covered with whitish or yellowish setae. Coloration variable, fully reddish-yellow to dark brown except reddish brown mouthparts, antennae and legs.

Head densely punctate, punctures on disc smaller than eye-facet, separated by < 1 diame-
ter; interspaces finely reticulate. Frontoclypeal suture incomplete, distinctly visible. Front
margin of clypeus with medial arcuate emargination. Labrum broadly arcuate. Mandibles moderately bent inward. Antennae (Fig. 6O) 1.12–1.16 times longer than HW (n = 6), with club indistinctly 3-segmented (appearing 2-segmented); approximate ratio of each segment (n = 1) is 2.38 : 1.81 : 1.69 : 1.25 : 1.19 : 1.06 : 1.00 : 1.19 : 1.75 : 2.25.

Pronotum (Figs. 6H–N) convex, transverse, variable in shape (see ‘Variability’ section below), 1.41–1.54 times as wide as long (n = 10); anterior corner slightly prominent; anterior margin unbordered; basal margin indistinctly bordered, moderately sinuate before obtusely

Fig. 6. Heterhelus (Heterhelus) scutellaris (Heer, 1841). A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – parameres of the lectotype of H. japonicus; E – median lobe of the lectotype of H. japonicus (lateral view); F – ovipositor; G – male abdominal sternite VII; H–N – variation of pronotum (H – Hokkaido; I – Aomori; J – Niigata; K – Tokyo; L – Yamaguchi; M – Ehime; N – Fukuoka); O – male right antenna. A, B, C, G, O = Hokkaido, Hitsujigaoka; F = Ehime Pref., Omogokei.
angulate posterior corners; lateral margins narrowly explanate, feebly serrate; punctures on
disc similar in size to those on head; interspaces finely reticulate.

Elytra conjointly 1.08–1.18 times as long as wide, 1.96–2.18 times as long as pronotum;
punctures on disc larger and shallower than those on pronotum; interspaces smooth. Abdominal
tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex truncate.
Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) 0.37 times as long as mesoventrite (n = 1)
0.28 times as long as metaventrite (n = 1); prosternal process slender, subparallel-sided.
Metaventrite convex, shining, densely covered with whitish or yellowish setae; metathoracic
discrinen in basal 1/2; punctures on disc distinctly smaller than those on head, separated by
one diameter at middle, becoming denser laterally. Inter-mesocoxal distance separated by
1.45 times width of inter-procoxal distance. Inter-metacoxal distance separated by 2.52 times
width of inter-procoxal distance. Abdominal sternites shining; approximate ratio of length of
abdominal sternites III–VII (n = 1) is 2.64 : 1.00 : 1.00 : 1.79 : 2.21; abdominal sternite VII
rather long (W7/L7 = 2.29, n = 4). Legs flattened; protibiae rather slender and short, shorter
than HW; tarsal claws simple.

Male genitalia with parameres (Figs. 6A, 6D) asymmetrical, slender and long (LP/WP =
3.10 (n = 1)); parameres regularly arcuate inward, bearing long setae; apex of median lobe
(Figs. 6C, 6E) sharply acuminate in lateral aspect; interparameral lobe broadly rounded.

Female. Coloration rarely becoming fully black (see ‘Coloration’ subsection below within
‘Variability’ section). Apical margin of abdominal tergite VII rounded. Ovipositor deeply
notched at apex, with long styli.

Variability. This species expresses variation in body coloration and shape of pronotal sides.
A total of 849 Japanese specimens were examined to verify species limits and phenotypic
plasticity.

Coloration. Dorsal body surface of males (n = 361) appears reddish brown. Females (n =
488) appear largely reddish brown to rarely fully black.

Lateral margins of pronotum (Figs. 6H–N). Margins distinctly projecting at mid-length in
specimens from northern Japan (Hokkaido and Tohoku regions), becoming more rounded in
specimens from western Japan (western areas of Honshū, Shikoku, and Kyūshū regions).

Bionomics. This species is dependent on Sambucus (Caprifoliaceae) plants for larval deve-
lopment. Adults feed on pollen and petals, and larvae develop inside the ovaries where they
feed on seeds. Adults also aggregate on flowers of Spiraea (Rosaceae), Fagaceae (AUDISIO
1993) and Magnolia kobus DC. var. borealis Sarg. (Magnoliaceae) in Japan (ISHIDA 1996).

Their life cycle was reported by HAYASHI (1977). According to his observations in Kanagawa
Prefecture, Japan, H. scutellaris was common in lowlands, while many populations of H. morio
were observed in highland areas. In April, adults gather at flowers of Sambucus racemosa
L. subsp. sieboldiana (Miq.) H. Hara (Caprifoliaceae) in synchrony with flowering events.
Subsequently, they mate and lay eggs on the flowers. Hatching larvae burrow into the ovaries
until seeds mature a few days later, and then they burrow into the seed. Larvae continue to grow
until the last instar larvae (probably 3rd instar) within a seed. Although, Sambucus racemosa
subsp. sieboldiana had three seeds in an ovary, the larva burrowed into only one seed, and never
burrowed into the other two seeds. In mid May, when ovaries ripen into fruit, the larvae bore an
exit hole, drop to the ground, and burrow into the soil where they pupate. Adults eclosed around mid June, but remain in earthen chambers until the following April. Of the three hundred fruits that were investigated, only forty-two possessed emerging larvae (Hayashi 1977).

Distribution. Japan (Hokkaido, Honshū, Shikoku, Kyūshū); Europe, Russia (East Siberia, Far East) and Mongolia (Hisamatsu 1985, Jelinek & Audisio 2007).

Note. The holotype of *Heterhelus scutellaris* was not examined, however, a series of Palaearctic specimens identified by European specialists was utilized for this revision. Herein, I follow Kirejtshuk’s opinion that *Heterhelus japonicus* is a junior synonym of *Heterhelus scutellaris*.

Heterhelus angusticollis was synonymized with *H. scutellaris* by Hisamatsu (1979), but no reason for the synonymy was given. Jelinek & Audisio (2007) listed *Heterhelus angusticollis* in their catalogue as a valid species. The holotype of *H. angusticollis* could not be examined for this study, therefore the species remains enigmatic for the author. However, based on the original description, this species seems to be junior synonym of *H. scutellaris*. Location and study of the types for both species is needed to clarify the taxonomic position of *H. angusticollis*.

Heterhelus (Heterhelus) morio (Reitter, 1878)

(Figs. 2A–B, 7)

Heterhelus morio: Reitter (1884: 258) [in key]; Reitter (1885: 104) [list]; Grouvelle (1913: 15) [catalogue]; Hisamatsu (1985: 177, pl. 28, fig. 3) [note, photo].

Heterhelus scutellaris: Kirejtshuk (1989: 146) (partim) [note]; Kirejtshuk (1992: 214) (partim) [in key].

Type material examined. **LECTOTYPE:** 1♂ 2♀, (ZMHB): ‘♂ // Amartus / morio m. m. sp // Lectotypus Heterhelus / morio (Reitter) / design. Kirejtshuk 1981’. **PARALECTOTYPES:** 2♂ 3♀, no locality labels.

Diagnosis. Body coloration piceous black, except yellowish mouthparts, antennae, and legs. Antennae with almost 2-segmented club. Lateral margins of pronotum uniformly arcuate. Abdominal sternite VII short (W7/L7 = 2.74, n = 4), with median castaneous tuft of setae in male. Parameres of male genitalia rather short and wide (LP/WP = 2.10 (n = 1)). Apex of median lobe bluntly rounded in lateral aspect. Ovipositor of female pigmented in basal part, with long styli.

Redescription. Length 1.8–2.5 mm.

Male. Body (Fig. 2A) oval, convex dorsally, dully shining, covered with grayish setae. Coloration piceous black; mouthparts, antennae, and legs reddish-yellow; clypeus reddish brown.

Head densely punctate, punctures on disc separated by ≤ 1 diameter; interspaces finely reticulate. Frontoclypeal suture incomplete, distinctly visible. Front margin of clypeus with
slightly arcuate emargination in middle. Labrum deeply arcuate. Mandibles moderately bent inward. Antennae (Fig. 7D) about as wide as HW, 1.00–1.17 times longer than HW (n = 4), with indistinct 3-segmented (almost 2-segmented) club; approximate ratio of each segment (n = 1) is 2.13 : 2.00 : 1.67 : 1.20 : 1.13 : 1.20 : 1.20 : 1.00 : 1.20 : 1.73 : 2.60.

Pronotum (Fig. 7l) 1.47–1.56 times as wide as long (n = 4), narrower than elytra at base; sides narrowly explanate, slightly serrate, uniformly arcuate, widest at middle; anterior angles slightly prominent, posterior angles distinctly angulate; anterior margin unbordered; basal margin bordered, moderately sinuate before posterior angles; punctures on disc similar in size to those on head; interspaces finely reticulate.

Fig. 7. Heterhelus (Heterhelus) morio (Reitter, 1878). A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – male right antenna; E – parameres of the lectotype of H. morio; F – median lobe of the lectotype of H. morio (lateral view); G – ovipositor; H – male abdominal sternite VII; I – pronotum. A, B, C, D, G, H, I = Ehime Pref., Omogokei.
Elytra long, conjointly 1.08–1.20 times as long as wide (n = 4), 2.03–2.22 times as long as pronotum (n = 4); punctures on disc similar in size to those on pronotum; interspaces smooth. Abdominal tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex truncate. Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) 0.37 times as long as mesoventrite (n = 1), 0.28 times as long as metaventrite (n = 1); prosternal process subparallel-sided. Mesoventrite depressed below the level of the metaventrite. Metaventrite convex, metathoracic discrinen in basal 1/2; disc densely punctate; punctures on disc smaller than those on head, separated by one diameter at middle, becoming denser laterally; interspaces finely reticulate. Inter-mesocoxal distance separated by 2.08 times width of inter-procoxal distance. Inter-metacoxal distance separated by 3.29 times width of inter-procoxal distance. Abdominal sternites shining; approximate ratio of length of abdominal sternites III–VII (n = 1) is 3.55 : 1.00 : 1.09 : 2.03 : 2.03; sternite VII short (W7/L7 = 2.74 (n = 4)), about as long as VI, with medial, castaneous tuft of setae. Legs flattened; protibiae rather short and slender, shorter than HW; tarsal claws simple.

Male genitalia with parameres (Figs. 7A, 7E) symmetrical, rather short and wide (LP/WP = 2.10 (n = 1)); apical region of parameres and interparameral lobe bearing long setae; median lobe bluntly rounded at apex in lateral aspect.

Female. Apical margin of abdominal tergite VII more rounded than those of male; seventh sternite without tuft of setae. Ovipositor (Fig. 7G) pigmented in basal part, with distinct styli. **Bionomics.** According to HAYASHI (1977), this species aggregates on flowers of *Sambucus racemosa* L. subsp. *sieboldiana* (Miq.) H. Hara (Caprifoliaceae) often in syntopy with *H. scutellaris*; see also Bionomics of *Heterhelus scutellaris* above.

Distribution. Japan (Honshû, Shikoku, Kyûshû) (HISAMATSU 1985).

Note. KIREJTSHUK (1989) treated *Heterhelus morio* as a junior synonym of *H. scutellaris*. At the same time, he designated lectotypes for *H. morio* and *H. japonicus*. After my examination of the lectotypes and paralectotypes of *H. morio* and *H. japonicus*, it is apparent that *H. morio* is a valid species; whereas, *H. japonicus* is indeed a junior synonym of *H. scutellaris*. Characters which differentiate *H. scutellaris* from *H. morio* include the following: coloration piceous black in both sexes; pronotal sides uniformly arcuate; parameres slender and rather short; median lobe bluntly rounded at apex in lateral aspect; ovipositor pigmented at base; male abdominal sternite VII shorter, about 2.74 times as long as wide, with castaneous tuft of setae in middle.

Subgenus Boreades Parsons, 1943

Type species. *Cercus abdominalis* Erichson, 1843, by original designation.

Heterhelus (Boreades) solani (Heer, 1841)
(Figs. 2C, 8)

Cateretes solani Heer, 1841: 412. **Type locality:** Bern, auf dem Chasseral, Genf [Switzerland].

Amartus (Heterhelus) solani: REITTER (1875: 3) [note].

Heterhelus solani: GANGLBAUER (1899: 452) [redescription]; REITTER (1911: 13) [in key]; GROUVELLE (1913: 15) [catalogue]; REITTER (1919: 7) [in key]; SPORNRAFT (1967: 23) [in key]; AUDISIO (1980: 21) [in key]; AUDISIO (1993: 816) [redescription, note]; KIREJTSHUK (1992: 214) [in key]; JELÍNEK & AUDISIO (2007: 458) [catalogue].
Boreades solani: Audesio et al. (2000: 333) [list].

Heterhelus (Boreades) solani: S-T. Hisamatsu & Lee (2007: 384) [list].

Brachypterus rubiginosus Erichson, 1843: 232. **Type locality**: Cassel [= Kassel, Germany]. Synonymized by Ganglbauer (1899: 452) with *Cateretes solani* Heer.

Brachypterus rubiginosus: Erichson (1845: 133) [redescription, note]; Sturm (1844: tab. CCXCI, fig. d, D) [figure]; Sturm (1845: 30) [redescription, note]; Redtenbacher (1849: 775) [redescription].

Cercus rubiginosus: Gemminger & Harold (1868: 803) [catalogue].

Cercus (Heterhelus) rubiginosus: Murray (1864: 234) [redescription, note]; Marseul (1885: 25) [redescription].

Cercus rhenanus Bach, 1866: 480. **Type locality**: Germania. Synonymized by Murray (1864: 234) with *Brachypterus rubiginosus* Erichson.

Cercus spiraeae Märkel, 1857: 177. **Type locality**: Germany. Synonymized by Murray (1864: 234) with *Brachypterus rubiginosus* Erichson.

Diagnosis. Body coloration variable, reddish brown, except dark brownish head and/or pronotum. Antennal club distinctly 3-segmented. Pronotum (Fig. 8F) strongly convex; lateral margins uniformly arcuate. Parameres (Fig. 8A) of male genitalia abruptly, medially curved at mid-length. Median lobe (Fig. 8C) sharply acuminate at apex in lateral aspect. Ovipositor (Fig. 8D) with short styli.

Redescription. Length 1.7–2.7 mm.

Male. Body (Fig. 2C) oval, convex, shining; disc densely covered with whitish or yellowish setae. Coloration variable, reddish brown, except dark brownish head (sometimes also pronotum dark brown).

Head densely punctate, punctures smaller than eye-facet, separated by ≤ 1 diameter; interspaces finely reticulate. Front margin of clypeus with slightly medial arcuate emargination. Labrum moderately arcuate. Mandibles moderately bent inward. Antennae (Fig. 8E) about as wide as HW, 1.00–1.03 times longer than HW (n = 7); antennal club distinctly 3-segmented; approximate ratio of each segment (n = 1) is 2.18 : 1.53 : 1.47 : 1.18 : 1.18 : 1.06 : 1.06 : 1.00 : 1.71 : 1.65 : 2.59.

Pronotum (Fig. 8F) strongly convex, 1.36–1.44 times as wide as long (n = 7); sides narrowly explanate, slightly serrate, uniformly arcuate, widest at middle; anterior angles slightly prominent; posterior angles obtusely angulate; anterior margin unbordered; basal margin distinctly bordered; punctures on disc slightly smaller than those on head; interspaces finely reticulate.

Elytra conjointly 1.00–1.12 times as long as wide (n = 3), 1.67–1.85 times as long as pronotum (n = 3), subparallel-sided, widest at mid-length; punctures on disc larger than those on pronotum, separated by < 1 diameter; interspaces smooth. Abdominal tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex arcuately emarginate. Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) 0.49 times as long as mesoventrite (n = 1), 0.46 times as long as metaventrite (n = 1); prosternal process subparallel-sided, apex rounded.
Mesoventrite depressed below the level of the metaventrite. Metaventrite convex, strongly shining, metathoracic discrmen in basal 3/4. Inter-mesocoxal distance separated by 1.47 times width of inter-procoxal distance. Inter-metacoxal distance separated by 2.80 times width of inter-procoxal distance. Abdominal sternites shining; approximate ratio of length of abdominal sternites III–VII (n = 1) is 2.63 : 1.00 : 1.00 : 1.13 : 1.56. Legs flattened; protibiae rather short and widened, shorter than HW; tarsal claws simple.

Male genitalia with median lobe (Fig. 8C) sharply acuminate at apex in lateral aspect; parameres (Fig. 8A) abruptly, medially curved at mid-length; apical margin of interparameral lobe projected at middle.

Female. Apical margin of abdominal tergite VII rounded. Ovipositor (Fig. 8D) with rather short styli.

Fig. 8. Heterhelus (Boreades) solani (Heer, 1841). A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – ovipositor; E – right antenna, male; F – pronotum; G – left maxillary palpus. A–G = Hokkaido, Kawayu.
Bionomics. The ecology of this species is similar to *H. scutellaris*, and both species may be found in sympatry throughout most of Europe (Audisio 1993). This species only occurs on Hokkaido and northern areas of Honshū in Japan.

Distribution. Japan (Hokkaido, Honshū); Europe, Russia (East Siberia, Far East), Mongolia and South Korea (Hisamatsu 1985, Jelínek & Audisio 2007).

Genus Sibirhelus Kirejtshuk, 1989

Type species. *Heterhelus corpulentus* Reitter, 1900, by original designation.

Diagnosis. Body elongate oval, strongly convex. Antennae moniliform. Pronotum with lateral margins uniformly rounded; punctures on disc larger than eye facet; posterior angles obtusely angulate; basal margin nearly straight or with slight curvature. Male abdominal tergite VIII externally visible. Tarsal claws more or less expanded at the base. Ovipositor with short styli.

Bionomics. *Sibirhelus corpulentus* was collected from flowers of *Carex dispalata* Boott (Cyperaceae) (see Bionomics of *S. corpulentus* below).

Distribution. Siberia and Japan (Jelínek & Audisio 2007).

Note. *Sibirhelus* is a monotypic genus with only one species, *S. corpulentus*, occurring from Siberia to Japan.

Sibirhelus corpulentus (Reitter, 1900)

(Figs. 2D, 9)

Heterhelus corpulentus Reitter, 1900: 231, tab. II, fig. 7. **Type locality:** [Russia:] Irkutsk.
Heterhelus corpulentus: Grouvelle (1913: 15) [catalogue].

Diagnosis. Body coloration fully luteous to dark brown (Fig. 2D); antennae almost moniliform (Fig. 9G). Medial tuft of setae on abdominal sternites III (Fig. 9K) in Japanese specimens, on abdominal sternites III–V in Russian specimens. Male protibiae (Fig. 9I) strongly medially arcuate.

Redescription. Length 2.7–3.6 mm.

Male. Body (Fig. 2D) elongate oval, strongly convex, feebly shining; dorsal disc with a long, yellowish setae. Coloration fully luteous or rarely dark brown.

Head densely punctate, each puncture larger than eye-facet, separated by < 1 diameter; interspaces finely reticulate or smooth. Frontoclypeal suture incomplete, distinctly visible. Front margin of clypeus with medial arcuate emargination. Labrum broadly notched at middle. Mandibles slightly bent inward. Antennae (Fig. 9G) 1.16 times longer than HW (n = 2), appearing moniliform, without club; approximate ratio of each segment (n = 1) is 2.00 : 1.14 : 1.43 : 1.14 : 1.14 : 1.00 : 1.00 : 1.00 : 1.14 : 1.29 : 2.14.

Pronotum strongly convex, 1.35 times as wide as long (n =1); lateral margins narrowly explanate, arcuately rounded, widest at mid-length; anterior corner not prominent; posterior
corner obtusely angulate; anterior margin nearly straight or with slight curvature, clearly bordered; basal margin gently arcuated, slightly sinuated at mid-width, distinctly bordered; punctures on disc larger than those on head, separated by < 1 diameter; interspaces finely reticulate.

Elytra conjointly 1.03 times as long as wide (n = 1), 1.75 times as long as pronotum (n = 1), subparallel-sided; punctures on disc larger than those on pronotum, extremely dense, separated by < 1 diameter; interspaces smooth. Abdominal tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex arcuately emarginate. Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) rather long, 0.56 times as long as mesoventrite (n = 1), 0.40 times as long as metaventrite (n = 1); prosternal process slightly converging towards apex. Mesoventrite depressed below the level of the metaventrite, apical margin between inter-mesocoxa straight. Metaventrite convex, strongly shining, metathoracic discriminmen in basal 1/2; disc with sparse punctures, separated by 1 or 2 diameter(s) at the middle; punctures becoming denser laterally. Inter-mesocoxal distance separated by 1.67 times width

Fig. 9. Sibirhelus corpulentus (Reitter, 1900). A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – ovipositor; E – tarsal claw of right foreleg; F – left maxillary palpus; G – male right antenna; H – female right protibia; I – male right protibia; J – pronotum; K – abdominal sternites. A–K = Tochigi Pref., Watarase-yūsuichi,
HISAMATSU: A review of the Japanese Kateretidae

of inter-procoxal distance. Inter-metacoxal distance separated by 2.50 times width of inter-
procoxal distance. Abdominal sternites III (Fig. 9K) with medial tuft of setae; approximate
ratio of length of abdominal sternites III–VII \((n = 1) \) is \(3.00 : 1.00 : 1.00 : 1.90 : 3.00 \). Legs
slender and long, protibiae (Fig. 9I) strongly medially arcuate; claws (Fig. 9E) more or less
expanded at the base.

Male genitalia sclerotized; tegmen (Fig. 9A) with parameres asymmetrical, bearing long
setae; interparameral lobe broadly rounded; median lobe (Fig. 9C) abruptly bent inward near
 apex in lateral aspect.

Female. Apical margin of abdominal tergite VII rounded. Ovipositor (Fig. 9D) deeply
bifid, with extremely short styli.

Variability. Russian specimens have medial tuft of setae on abdominal sternites III–V (Kirejt-
shuk, pers. comm.), but Japanese specimens have these tufts on abdominal sternite III only.
The tarsal claws were described as ‘subdentatis’ in the original description (REITTER 1900),
and as ‘dentate’ in KIREJTSUKH (1992). However, in the Japanese specimens examined so far,
the base of the tarsal claws is more or less expanded at the base with no apparent tooth or
denticle.

Bionomics. Twelve specimens of *S. corpulentus* were collected from flowers of *Carex dispa-
lata* Boott (Cyperaceae), in Watarase-yūsuichi, Tochigi Pref. No additional information is
available.

Distribution. Japan (Honshū) – first recorded by HISAMATSU (2003); Russia (Irkutsk and

Genus *Brachypterus* Kugelann, 1794

Type species. *Dermestes urticae* Fabricius, 1792, subsequent designation by THOMSON
(1859).

Diagnosis. Body oval, strongly convex. Pronotum transverse, lateral margins uniformly
rounded; disc with punctures larger than eye facet; posterior angles obtusely angulate; basal
margin slightly sinuate before posterior angles. Antennae with distinct three-segmented club.
Male abdominal tergite VIII externally visible. Tarsal claws strongly dentate at the base.
Ovipositor without styli.

Bionomics. Larval stages have been found on flowers of *Gesnouinia* and *Urtica* (Urticaceae)
(JELINEK & CLINE 2010).

Distribution. Twenty-three species have been recorded. The species have wide distributio-
nal ranges in the Palaearctic, Oriental, Nearctic, and Afrotropical Regions (JELINEK & CLINE
2010).

Brachypterus urticae (Fabricius, 1792)

(Figs. 2E, 10)

Dermestes urticae Fabricius, 1792: 235. **Type locality:** Germania [= Germany].

Cercus urticae: LATREILLE (1807): 16 (partim).

Catheretes urticae: GYLLENHALL (1808): 247 [redescription]; GYLLENHALL (1827: 305) [note].

Catheretes urticae: STEPHENS (1830: 52) [redescription].
Brachiptyerus urticae: ERICHSON (1843: 231) [note]; ERICHSON (1845: 132) [redescription, note]; STURM (1844: tab. CCXCI, fig. c. C) [figure]; STURM (1845: 28) [redescription, note]; REDTENBACHER (1849: 162) [in key]; REDTENBACHER (1858: 324) [in key]; GEMMINGER & HAROLD (1868: 804) [catalogue]; HORN (1879: 270) [redescription, note]; GANGLBAUER (1899: 453) [redescription]; BLATCHELEY (1910: 630) [redescription, note]; REITTER (1911: 13) [in key]; REITTER (1919: 8) [in key]; GROUVELLE (1913: 18) [catalogue]; HISAMATSU (1959: 61); SPORNRAFT (1967: 23) [in key]; AUDISIO (1980: 23) [in key]; AUDISIO (1993: 838) [redescription, note]; HISAMATSU (1985: 177, pl. 28, fig. 5) [note, photo]; KIREJJSHK (1992: 214) [in key]; KIRK-SPRIGGS (1996: 47) [note, illustration]; JELÍNEK & AUDISIO (2007: 458) [catalogue].

Brachiptyerus (Brachiptyerus) urticae: MURRAY (1864: 242) [redescription, note]; MARSEUL (1885: 31) [redescription]; SEIDLITZ (1887–1891: 208) [in key]; SEIDLITZ (1888–1891: 224) [in key].

Strongylius abbreviatus Herbst, 1792: 190, tab. 43, fig. 10. Type locality: Europa. Synonymized by MURRAY (1864: 242) with Dermestes urticae Fabricius.

Cateretes affinis Heer, 1841: 411. Type locality: Urnerboden ob Lintthai [Switzerland]. Synonymized by GANGLBAUER (1899: 453) with Dermestes urticae Fabricius.

Brachiptyerus (Brachiptyerus) affinis: MURRAY (1864: 242) [note].

Cercus pusillus Melsheimer, 1846: 105. Type locality: Pennsylvania [USA]. Synonymized by GEMMINGER & HAROLD (1868: 804) with Dermestes urticae Fabricius.

Brachiptyerus flavicornis: GEMMINGER & HAROLD (1868: 804) [catalogue].

Brachiptyerus (Brachiptyerus) flavicornis: MURRAY (1864: 246) [redescription, note]; MARSEUL (1885: 33) [redescription].

Diagnosis. Body coloration piceous black. Lateral margins of pronotum weakly sinuated at basal 1/3. Ovipositor (Fig. 10G) triangular, with two small projections at apex.

Redescription. Length 1.6–2.2 mm.

Male. Body (Fig. 2E) oval, strongly convex and shining; dorsal disc with yellowish setae. Coloration piceous black; mouthparts, antennal flagella, and legs, reddish brown; antennal club dark reddish brown.

Head densely punctate, punctures separated by < 1 diameter; interspaces feebly reticulate. Frontoclypeal suture feebly visible. Front margin of clypeus with medial arcuate emargination. Labrum largely exposed, slightly arcuately notched at middle. Mandibles never strongly bent
inward. Antennae (Fig. 10D) slightly shorter than HW, 0.91–0.97 times longer than HW (n = 4), with club distinctly 3-segmented; approximate ratio of each segment (n = 1) is 2.38 : 2.13 : 1.63 : 1.00 : 1.25 : 1.25 : 1.13 : 2.00 : 1.88 : 2.50.

Pronotum (Fig. 10H) transverse, narrower than elytra at the base, 1.44–1.55 times as wide as long (n = 6); lateral margins arcuately rounded, narrowly explanate, weakly sinuated at basal 1/3; anterior angles slightly prominent, posterior angles obtuse; anterior margin nearly straight or with slight curvature, incompletely bordered; basal margin slightly sinuate before posterior angles, bordered; punctures on disc about as large as those on head, separated by < 1 diameter; interspaces smooth or feebly reticulate.

Fig. 10. Brachypterus urticae (Fabricius, 1792). A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – male right antenna; E – left maxillary palpus; F – tarsal claw of right foreleg; G – ovipositor; H – pronotum.
Elytra conjointly 0.85–1.00 times as long as wide (n = 6), 1.55–1.72 times as long as pronotum (n = 6), widest at mid-length; punctures on disc larger than those on pronotum, separated by < 1 diameter; interspaces smooth. Abdominal tergite VI partially obscured by elytra. Abdominal tergite VII fully exposed, apex arcuately emarginate. Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) short, 0.27 times as long as mesoventricle (n = 1), 0.26 times as long as metaventricle (n = 1); prosternal process subparallel-sided, apex rounded. Mesoventricle depressed below the level of the metaventricle. Metaventricle convex, strongly shining, without metathoracic discimen; disc with sparse and small punctures, separated by 2 or 3 diameters. Inter-mesocostral distance separated by 3.42 times width of inter-procostral distance. Inter-metacostral distance separated by 5.89 times width of inter-procostral distance. Abdominal sternites shining; approximate ratio of length of abdominal sternites III–VII (n = 1) is 2.50 : 1.00 : 1.00 : 1.71 : 1.86. Legs slender; protibiae slightly wider than maximal width of the antennal club at apical margins; tarsal claws (Fig. 10F) strongly dentate at the base.

Male genitalia sclerotized; tegmen (Fig. 10A) with parameres slender and asymmetrical, bearing long setae at apex; in ventral view, left paramere bent inward at apical third, meanwhile right paramere nearly straight or with slight curvature; median lobe (Fig. 10C) slender, abruptly mediadly arcuate near apex in lateral aspect.

Female. Apical margin of abdominal tergite VII rounded. Ovipositor (Fig. 10G) triangular, with two small projections at apex, without styli.

Bionomics. This species is found on flowers of *Urtica* spp. (*Urticaceae*) (Audisio 1993, Kirk-Spriggs 1996). In Japan, *U. thunbergiana* Siebold et Zucc. is the known host plant (Hisamatsu 1985).

Distribution. Japan (Hokkaido, Honshu – first recorded by Hisamatsu (1959)); Europe, Turkey, Russia (East and West Siberia, Far East), Kyrgyzstan, Kazakhstan, China (Northern Territory), South Korea, and North America (Parsons 1943, Hisamatsu 1985, Jelinek & Audisio 2007).

Genus Brachypterolus Grouvelle, 1913

Type species: *Catheretes gravidus* Illiger, 1798 (= *Brachypterolus pulicarius* (Linnaeus, 1758)), subsequent designation by Jelinek & Steele (1966).

Diagnosis. Body oval, strongly convex, dorsal and ventral disc densely covered with long whitish setae. Antennae with distinct 3-segmented club. Pronotum transverse, lateral margins rounded; disc with punctures larger than eye facet; posterior angles distinctly angulate, more or less projecting posteriorly; basal margin strongly sinuate before posterior angles. Male abdominal tergite VIII externally visible. Tarsal claws strongly dentate at base. Ovipositor without styli.

Bionomics. Larval stages occur on flowers of *Antirrinum* and *Linaria* (*Scrophulariaceae*) (Jelinek & Cline 2010).

Distribution. Eleven species are included in the genus, all of them from the Palaearctic region, and one Holarctic (Parsons 1943, Jelinek & Cline 2010).
Brachypterolus pulicarius (Linnaeus, 1758)
(Figs. 2F–G, 11)

Dermestes pulicarius Linnaeus, 1758: 357. Type locality: not given, probably Europe.
Dermestes pulicarius: LINNAEUS (1767: 564) [redescription].
Sphaeridium pulicarium: FABRICIUS (1775: 68) [redescription].
Antribus pulicarius: FOURCROY (1785: 137) [redescription].
Nitidula pulicaria: OLIVIER (1790: 20) [redescription].
Cercus pulicarius: LATEILLE (1807: 15) [redescription].
Catheretes pulicarius: GYLLENHAL (1808: 245) [redescription, note]; GYLLENHAL (1827: 305) [note].
Heterostomus pulicarius: GANGBAUER (1899: 455) [redescription]; REITTER (1911: 14) [in key]; BÖVING & CRAIGHEAD (1931: 158, pl. 36, J–P) [larval illustration].
Proteinus pulicarius: BLACKWELDER (1952) [designated as the type species of the genus Proteinus Latreille, 1790 (Staphylinidae)]; ICZN (1969: 14) [as invalid combination].
Scaphidium agaricium Herbst, 1793: 134. Type locality: Germania [= Germany]. Synonymized by MURRAY (1864: 247) with Catheretes gravidus Illiger.
Scaphidium scutellatum Panzer, 1792: 11. Type locality: Gallia [= France]. Synonymized by GROUVELLE (1913: 22) with Dermestes pulicarius Linnaeus.
Catheretes gravidus: JELÍNEK & STEELE (1966: 239) [designated as the type species of the genus Brachypterolus Grouvelle, 1913].
Dermestes gravidus: PAYKULL (1800: 448) [redescription].
Brachypterus gravidus: ERICHSON (1843: 230) [list]; ERICHSON (1845: 130) [redescription, note]; STURM (1844: tab. CCXC, fig. b. B) [figure]; STURM (1845: 22) [redescription, note]; REDTENBACHER (1849: 162) [in key]; REDTENBACHER (1858: 324) [in key]; GEMMINGER & HAROLD (1868: 804) [catalogue].
Brachypterus (Heterostomus) gravidus: MURRAY (1864: 247, pl. XXXII, fig. 7); MARSEUL (1885: 26) [redescription]; SEIDLITZ (1887–1891: 209) [in key]; SEIDLITZ (1888–1891: 224) [in key].
Brachypterus gravidus var. flavicilavis Rey, 1889: 31. Type locality: Corse [= Corsica Is., France]. Synonymized by GROUVELLE (1913: 22) with Dermestes pulicarius Linnaeus.
Brachypterus laticollis Küster, 1848: 35. Type locality: Dalmatia [in Croatia]. Synonymized by GANGBAUER (1899: 455) with Dermestes pulicarius Linnaeus.
Brachypterus laticollis: GEMMINGER & HAROLD (1868: 804) [catalogue].
Brachypterus (Heterostomus) laticollis: MURRAY (1864: 247) [note]; MARSEUL (1885: 7) [redescription].
Brachypterolus shimoyamai Hisamatsu, 1985: 177, pl. 28, f. 6, syn. nov. Type locality: Japan, Aomori Pref., Nishitsugaru-gun, Fukaura, Azumahama.

Redescription. Length 2.4–2.9 mm.

Male. Body (Fig. 2F) oval, strongly convex; densely covered with whitish long setae on dorsum and venter. Coloration piceous black; mouthparts (excluding reddish-yellow maxillary palpus), basal 1/2 of mesoventrite, and legs, reddish brown; antennae reddish-yellow.

Head without frontoclypeal suture; disc with dense and deep punctures; punctures on disc larger than eye-facet, separated by < 1 diameter; interspaces smooth. Front margin of clypeus with medial arcuate emargination. Labrum slightly arcuately notched at middle. Mandibles strongly bent toward the midline. Antennae (Fig. 11E) shorter than HW, 0.82–0.89 times longer than HW (n = 2); club distinctly 3-segmented; approximate ratio of each segment (n = 1) is 2.73 : 2.49 : 2.13 : 1.65 : 1.47 : 1.44 : 1.40 : 1.00 : 1.95 : 1.89 : 2.75.

Pronotum (Fig. 11F) strongly convex, transverse, 1.51–1.56 times as wide as long (n = 4); lateral margins not explanate, subparallel sided at basal 2/3; anterior angles feebly prominent; posterior angles distinctly angulate, strongly projecting posteriorly in European specimens, weakly projecting in Japanese specimens; anterior margin bordered; basal margin indistinctly bordered, strongly sinuate before posterior angles; disc densely and deeply punctate, each puncture closely approximating the next and often appearing connected; interspaces smooth.

Elytra wider than long, conjointly 0.71–0.79 times as long as wide (n = 4), 1.11–1.29 times as long as pronotum (n = 4), subparallel-sided; punctures on disc slightly larger than those on pronotum, separated by < 1 diameter; interspaces smooth. Abdominal tergite VI fully exposed. Abdominal tergite VII also fully exposed, apex truncate or slightly arcuately emarginate. Abdominal tergite VIII externally visible.

Prosternum (excluding prosternal process) 0.33 times as long as mesoventrite (n = 1), 0.23 times as long as metaventrite (n = 1); disc densely punctate; prosternal process slender, narrowing to apex. Mesoventrite depressed below the level of the metaventrite. Metaventrite convex, with close punctures, each puncture separated by < 1 diameter; metathoracic discrmen in basal 1/2. Inter-mesocoxal distance separated by 2.96 times width of inter-procoxal distance. Inter-metacoxal distance separated by 5.29 times width of inter-procoxal distance. Abdominal sternites shining; approximate ratio of length of abdominal sternites III–VII (n = 1) is 3.20 : 1.00 : 1.00 : 3.30 : 4.50. Legs with protibiae short, shorter than antennal length; tarsal claws (Fig. 11H) strongly dentate at the base.

Male genitalia with parameres (Fig. 11A) slender and asymmetrical, bearing long setae at apex; in ventral view, left lobe slightly wider than right lobe; median lobe (Fig. 11B–C) elongate and flat.

Female. Apical margin of abdominal tergite VII rounded. Ovpositor (Fig. 11D) triangular, without styli.
Variability. The Japanese specimens have the following differences as compared with European specimens: pronotum with denser punctures, posterior angles more weakly projecting posteriorly; coloration of metafemora always reddish.

Bionomics. This species has been collected from flowers of *Linaria japonica* Miq. (Scrophulariaceae) in Japan. Likewise European individuals have been collected from *Linaria* spp. (Kirk-Spriggs 1996). Larval stages were illustrated by Böving & Craighead (1931).

Distribution. Japan (Hokkaido, Honshū); Europe, Turkey, Russia (East and West Siberia, Far East), Kazakhstan, Mongolia, China (Northwest Territory), South Korea, (Hisamatsu 1985, Jelinek & Audisio 2007).

Taxonomy. There is some variation between European and Japanese specimens (see Variability above). However, male and female genitalia are of the same size and shape. Therefore, I treat

Fig. 11. *Brachypterolus pulicarius* (Linnaeus, 1758). A – tegmen (ventral view); B – median lobe (ventral view); C – median lobe (lateral view); D – ovipositor; E – male right antenna; F – pronotum; G – left maxillary palpus; H – tarsal claw of right foreleg. A–H = Aomori Pref., Azumahama.
Brachypterolus shimoyamai Hisamatsu as a junior synonym of *B. pulicarius* (Linnaeus).

Note. Reitter (1884, 1885) recorded *Brachypterus (Heterostomus) linariae* (Stephens, 1830) (= *Brachypterolus linariae*) from Sapporo, Hokkaido, however this record is dubious and concerns more likely *B. pulicarius*.

Discussion

New host plant records of *Sibirhelus* and *Platamartus* were recorded in the present study (Table 1). *Carex dispalata* (Cyperaceae) was recorded as a host plant for these two genera for the first time.

According to the current understanding of the plant phylogeny and systematics (Angiosperm Phylogeny Group 2009), the genera *Carex* (Cyperaceae) and *Juncus* (Juncaceae) which are host plants of *Kateretes, Platamartus, and Sibirhelus* belong to ‘Commelinids’. In contrast, the genus *Sambucus* (Caprifoliaceae) which is the host plants of *Heterhelus* belongs to ‘Campanulids’. Genera *Gesnouinia* and *Urtica* (Urticaceae) which are host plants of *Brachypterus* belong to ‘Fabids’, and *Antirrinum* and *Linaria* (Scrophulariaceae) which are the host plants of *Brachypterolus* belong to ‘Lamiids’.

Molecular and phylogenetic analysis would be helpful in this context to analyze the phylogenetic relationships between the genera of Kateretidae and compare them to the phylogeny of their host plants.

Acknowledgements

I wish to express my sincere gratitude to Dr. Andrew R. Cline (Plant Pest Diagnostics Center, Sacramento, U.S.A.) and Dr. Josef Jelinek (Czech Republic), Prof. Dr. Masahiro Sakai, Dr. Hiroyuki Yoshitomi (EUM), and Ms. Charmain Winter (English Education Center, Ehime University) for critical reading of the manuscript and for giving me valuable information for the present study. My hearty thanks are also due to Mr. Hideo Ohkawa (Tochigi Pref.), Mr. Yukihiko Hirano (Kanagawa Pref.), Mr. Yasumi Takahashi (Iwate Pref.), and Dr. Takashi Kurihara (Insect Systematics Laboratory, Natural Resources Inventory Center, National Institute for Agro-Environmental Sciences) for their loan or donation of materials;
and to Dr. Manfred Uhlig, and Dr. Johannes Frisch (ZMHB) for lending me the lectotypes of Heterhelus. I would also express my sincere gratitude to Dr. Alexander Georgievich Kirejtshuk (Laboratory of Insect Systematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia) for comparing Platamartus jakowlewi Reitter and Sibirhelus corpulentus (Reitter) with type specimens.

References

Back copies

The library of the Entomological Department of the National Museum still has back copies of most titles ever published by the department. These include:

Acta Entomologica Musei Nationalis Pragae
Volumes 2/1924 – 51(1)/2011 (excluding 16/1938)

Acta Faunistica Entomologica Musei Nationalis Pragae

Acta Entomologica Musei Nationalis Pragae, Supplementum

8/1977 Čejchan A., The postembryonic development of the bush crickets Tettigonia cantans (Fussley), Decticus verrucivorus (L.) and Metrioptera brachyptera (L.) (Orthoptera: Tettigonioidea: Tettigoniidae). 88 pp + 11 pls.
Vol. 51 (supplementum)/2011 Minoshima Y. & Hayashi M.: Larval morphology of the Japanese species of the tribes Acidocerini, Hydrobiusini and Hydrophilini (Coleoptera: Hydrophilidae)

Acta Faunistica Entomologica Musei Nationalis Pragae, Supplementum

If you are interested in some of them, please contact:
Library, Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic; e-mail: Irena_Chalupova@nm.cz.