Erichsonius (Sectophilonthus) jelineki sp. nov.,
the first representative of the genus from the Seychelles
(Coleoptera: Staphylinidae: Staphylininae)

Manfred UHLIG1) & Jiří JANÁK2)

1) Museum für Naturkunde, Invalidenstraße 43, D-10115 Berlin, Germany; e-mail: Manfred.Uhlig@mfn-berlin.de
2) CZ-41762 Rtyně nad Bilymou, č. 4, Czech Republic

Abstract. Erichsonius (Sectophilonthus) jelineki sp. nov. from the Seychelles (type locality: Island of Mahé: Trois Frères) is described, illustrated, and distinguished from similar species.

Key words. Staphylinini, Philonthina, taxonomy, new species, description, Afrotropical Region, Seychelles, Island of Mahé

Introduction

Erichsonius Fauvel, 1874 is a moderately speciose genus of rove beetles of the subtribe Philonthina, with about 160 described species (HERMAN 2001, UHLIG 1992) distributed in the faunal kingdom Megagaea (= Holarctic + Afrotropical + Oriental Region according to DE LATTIN (1967)) and with only one species occurring in the faunal kingdom Notogaea (= Austral region according to DE LATTIN (1967)) and none in Neogaea (= Neotropic region according to DE LATTIN (1967)). All old records of “Actobius Fauvel, 1875” (today a synonym of Erichsonius, but originally it included also Neobisnius species) from Australia and South America refer to species of the genus Neobisnius Ganglbauer, 1895. Only one species is described from New Guinea, which is included in Notogaea; all other Erichsonius species are known from North America, Europe, the African and the Asian mainland, the Asian islands and many islands in the Indian Ocean such as Sri Lanka, Comoros, Madagascar, Mauritius and Reunion. No Erichsonius species have been recorded or described from the archipelago of Seychelles until one of us (J.J.) captured a series of an unknown Erichsonius species during an expedition to the island in 2007, which is described here.
The terminology and methods follow those used in previous papers on *Erichsonius* (UHLIG 1988, 1989a,b, 1990, 1991a,b, 1992, 1997; UHLIG & WATANABE 1992). Abbreviations used in the text are derived from Latin terms and explained in Table 2 (see also UHLIG & WATANABE 1992). Dry-mounted specimens were studied under binocular stereomicroscopes Leica MZ16 and MBS 10. Line drawings were made using a Zeiss Laboval compound microscope with ocular grid. Digital photographs were taken with a DSLR camera Canon EOS 450D connected by an ocular adapter to either a binocular stereomicroscope Leica MZ16 or the compound Zeiss microscope. Measurements were taken with the compound microscope or the stereomicroscope using an ocular scale. Measurements and indices in this study are based on measurements of 20 males and 20 females and are given in the following order:

\[x \pm SD (HT / Min–Max) = \text{arithmetic mean of males and females } [x] \pm \text{standard deviation [SD]} (\text{holotype [HT]} / \text{smallest [Min]}–\text{largest [Max] specimen}). \]

The interior puncture series of pronotum (sometimes also called “dorsal row” or “submedial row”) may consist of different numbers of punctures on the left and right side. This is indicated as 1+8|9, which means that the puncture series on the left side of pronotum consists of 1+8 punctures but on the right side of 1+9 punctures. The first puncture of the pronotal series is mostly located immediately at the margin of the pronotum, somewhat shifted laterally and therefore often standing in the marginal puncture series. Some of the old authors counted this point but others did not. For this reason, COIFFAIT (1974: 2) proposed to indicate the dorsal puncture series as “1+4” to make sure that the first point is included in counting and the dorsal puncture series consists of five punctures. The number of punctures in the holotype as well as the minimum and maximum number of punctures in the material examined is also mentioned within the formula in the same way as other measurements. For example, the formula 1+8 ± 1 (8|9 / 6–9) means that the pronotal puncture series consists on average of 1+8 punctures with a standard deviation of ± 1; the holotype has 1+8 punctures on the left side and 1+9 punctures on the right side; the minimum of the pronotal puncture series consists of 1+6 punctures and the maximum consists of 1+9 punctures.

The chaetotaxy of the large setae at the posterior margins of male and female tergites X and male sternite IX is explained with two examples as follows:

(4)3-1-3(4) – in the middle of the posterior margin is one large seta inserted, on the left and on the right side are in general three (sometimes however four) large bristles inserted.

3(2)-(1)-(5)4 – in the middle of the posterior margin is (sometimes one) large seta inserted, on the left side are in general three (sometimes only two) and on the right side in general four (sometimes however five) large setae inserted.

The following acronyms are used to indicate the depository of specimens:

JPC Jiří Janák collection, Rtyně nad Bilinou, Czech Republic;
MFNB Museum für Naturkunde, Berlin, Germany;
NMPC National Museum, Praha, Czech Republic.
Taxonomy

Erichsonius (Sectophilonthus) jelineki sp. nov.

(Figs. 1–38)

Type locality. Seychelles, Mahé, Trois Frères, 600–620 m, 4°38'10"S/55°26'39"E.

Type material. **HOLOTYPE: ♂, ‘SEYCHELLES: Mahé, Trois Frères, 600–620 m, 4°38′10″S/55°26′39″E, 21.–27.11.2007, J. Janák lgt. // forest spring area treading’ (MFNB). PARATYPES: SEYCHELLES: same data as holotype, 20 ♀♂ 25 ♀♀ (JJPC: 17 ♀♂ 21 ♀♀, MFNB: 2 ♀♂ 2 ♀♀, NMPC: 1 ♂ 1 ♀); same data as holotype, but ‘forest sifted litter’, 1 ♂ (JJPC); ‘SEYCHELLES, Mahé, Mont d’Or, 200–300m, 4°38’58″S, 55°24’55″E, J. Janák lgt. 8.12.2007 // Cinnamon forest decaying *Artocarpus* fruit’, 4 ♀♂ 3 ♀♀ (JJPC); ‘SEYCHELLES, Mahé, Pied du Morne, 400–500m, 4°37’36″S, 55°26’08″E, J. Janák lgt., 24.11.2007 // forest spring area treading’, 11 ♀♂ 8 ♀♀ (JJPC); ‘SEYCHELLES, Mahé, Le Niol, 150m, 4°37’12″S, 55°25’39″E, J. Janák lgt., 24.–28.11.2007 // decaying *Artocarpus* fruit’, 1 ♂ 1 ♀ (JJPC).

Description. Length LCo [mm] 4.3 ± 0.4 (4.7 / 3.7–4.9). Anterior body length LCa [mm] 2.2 ± 0.1 (2.3 / 2.0–2.4).

Colour. Head, pronotum and scutellum pitchy brown to almost black. Posterior margin of pronotum indistinctly reddish brown. Elytra yellow, each with large black spot occupying about two thirds but leaving the suture, posterior margin, broad anterior margin and shoulder yellow. Deformed lateral parts of elytra dark, especially in the posterior part, where they connecting with black dorsal spot. Abdomen pitchy brown with tergites II and X yellow and posterior margins of remaining tergites reddish yellow. Legs yellow, with tibiae slightly infuscate. Antennae with antennomere I and base of antennomere II yellow, antennomeres II to VII infuscate, from antennomere VIII onwards gradually more yellowish, at least antennomeres X and XI yellow. Mouthparts yellow, mandibles reddish yellow.

Head (Figs. 32, 35) of rounded square to slightly transverse-rectangular shape, slightly shorter than wide across eyes [i LC : TO 0.93 ± 0.02 (0.94 / 0.89–0.97)], temples parallel-sided, eyes slightly prominent to prominent [i TO : TTe 1.11 ± 0.04 (1.04 / 1.03–1.22)], as long as to distinctly longer than temples [i LO : TTe 1.16 ± 0.09 (1.07 / 0.97–1.33)]. Head transversally convex, shorter than pronotum [i LC : LP 0.84 ± 0.02 (0.84 / 0.79–0.89)] and as wide as pronotum [i TO : TP 1.00 ± 0.02 (0.97 / 0.97–1.05)].

Antennae (Figs. 31, 35) long and slender, all segments longer than wide [i L5 : T5 1.217 ± 0.078 (1.143 / 1.075–1.395)], [i L10 : T10 1.006 ± 0.058 (1.125 / 0.906–1.154)]; see also Tables 1 and 2.

<table>
<thead>
<tr>
<th>Antennomere</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (μm)</td>
<td>200</td>
<td>136</td>
<td>136</td>
<td>73</td>
<td>73</td>
<td>68</td>
<td>73</td>
<td>77</td>
<td>77</td>
<td>82</td>
<td>163</td>
</tr>
<tr>
<td>Width (μm)</td>
<td>64</td>
<td>73</td>
<td>59</td>
<td>55</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>73</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>3.125</td>
<td>1.863</td>
<td>2.305</td>
<td>1.327</td>
<td>1.143</td>
<td>1.062</td>
<td>1.141</td>
<td>1.203</td>
<td>1.203</td>
<td>1.125</td>
<td>1.117</td>
</tr>
</tbody>
</table>

Table 1. *Erichsonius (S.) jelineki* sp. nov.: measurements and length/width indices of antennomeres of holotype.
Pronotum (Figs. 33, 35) longer than wide \([i \text{ LP : TP } 1.11 \pm 0.02 (1.10 / 1.06–1.16)]\), of rectangular shape with rounded angles, parallel-sided to slightly narrowed posteriorly, broadest at anterior third to midlength, transversally convex.

Scutellum (Fig. 34) moderate finely and sparingly punctate, slightly denser than elytra.

Elytra (Fig. 34, 35) distinctly longer \([i \text{ LE : LP } 1.30 \pm 0.03 (1.30 / 1.24–1.38)]\) and wider \([i \text{ TE : TP } 1.34 \pm 0.03 (1.30 / 1.27–1.41)]\) than pronotum. Elytra together longer than wide \([i \text{ LE : TE } 1.08 \pm 0.02 (1.09 / 1.03–1.12)]\), of rounded rectangular shape, sides slightly rounded and dilated posteriorly, broadest at fourth fifth of their length. Elytra slightly convex transversally.

Posterior wings completely developed.

Abdomen (Fig. 35) staphylininae-shaped with urite IV broadest. Terga III to V with feeble basal impressions. Tergum VII with complete membranous palisade fringe at its posterior margin.

Pubescence, punctation and microsculpture. Pubescence dark. Punctuation of head (Fig. 32) and pronotum (Fig. 33) moderate and sparse, microsculpture weak, consisting of transverse meshes and waves, meshes mostly broad and moderately dense. Punctures of elytra (Fig. 34) moderately dense and moderately fine. Elytra without microsculpture. Abdomen (Fig. 35) finely and densely punctate, microsculpture more distinct than on pronotum, consisting of transverse meshes and waves, meshes broad and dense. Interior puncture series of pronotum consisting of 1+8 \(\pm 1\) \((8/6–9)\) punctures.

Male. Tarsomeres 1 to 4 of protarsus dilated, nearly as broad as apex of protibia. Abdominal tergite X (Figs. 6, 7, 24) curved apically and slightly emarginate in middle, posterior margin with \((3)2-0-2(3)\) long and strong bristles and fine cuticular fringes. Posterior margin of sternite VIII (Figs. 9, 10, 22) with broad arcuate emargination and moderately long and moderately strong bristles. Sternite IX (Figs. 5, 8, 23) rather broad, nearly parallel-sided with an asymmetrical basal process, posterior margin feebly truncate and slightly emarginated in middle, with \((3)2-(1)-2(3)\) long and strong bristles and 4–6 medium-sized or fine apical bristles at posterior margin.

Aedeagus (Figs. 1–4, 15–21). Parameral side facing ventrally when in rest (rest position of aedeagus 0° according to COIFFAIT (1972)). For measurements and proportions see Table 2. Parameres distinctly exceeding top of median lobe \(i \text{ (DA-Pm) : LPm } +0.157 \pm 0.012 (0.163 / 0.122–0.175)\). Median lobe apically with broad protuberance forming a rounded, rhomboidal, transversely flatly curved apical piece. Distal orifice situated dorso-apically. Parameres in basal half parallel to median lobe, in apical half forceps-shaped, dilated and somewhat twisted along longitudinal axis; apical part slender, spoon-like, at inner side with few fine hairs, but with neither peg nor apical setae. Internal sac with fine spines, squamous structures and V-shaped basal sclerite (Figs. 1–3, 17–21).

Female. In general appearance similar to male. Anterior tarsomeres less dilated than in males. Abdominal tergite X (Figs. 11, 12, 25–27) rounded, wedge-shaped, broadly truncate at apex, bearing \((4)3-0-3(4)\) rather long apical setae and fine cuticular fringes. Valves (lateral sternal sclerites IX + coxite + stylus) with lateral sternal sclerites IX slightly longer than coxite + stylus (Figs. 13, 14, 28–30). Coxite long and rather broad, stylus moderate.
Table 2. *Erichsonius* (*S.* jelineki) sp. nov. Measurements and indices, abbreviations and terminology. Abbreviations are derived from Latin or Greek anatomical terms (see also UHLIG & WATANABE 1992).

A aedeagus, male copulatory organ. C head. Ca anterior body (head + pronotum). Co body. D distance. DA-Pm distance from top of median lobe to top of parameres. E elytron(elytra). HT holotype. i index or ratio. L length. LA length of aedeagus (length of median lobe). LC length of head. LCa length of anterior body. LCo length of body. LE length of elytra. LO length of eyes. LP length of pronotum. LPm length of parameres(s). LT length of temples. LT lectotype. L5/L10 length of 5th/10th antennal segment. Max maximum. Min minimum. n total of specimens. O eye. P pronotum. PLT paralectotype(s). Pm paramere(s). PT paratype(s). Pr protuberance. SD standard deviation. ST syntype(s). T width. TA width of top of median lobe. TAPr width of protuberance of median lobe. TE width of elytra. TO width of head across eyes. TP width of pronotum. TTe width of head at the temples. Te temple(s). x arithmetic mean.

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HT</td>
<td>x ± s</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>LCo (mm)</td>
<td>4.7</td>
<td>4.1 ± 0.297</td>
<td>3.8</td>
<td>4.7</td>
</tr>
<tr>
<td>LCa (mm)</td>
<td>2.3</td>
<td>2.2 ± 0.088</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>L5 (mm)</td>
<td>0.073</td>
<td>0.070 ± 0.003</td>
<td>0.063</td>
<td>0.074</td>
</tr>
<tr>
<td>T5 (mm)</td>
<td>0.064</td>
<td>0.058 ± 0.004</td>
<td>0.052</td>
<td>0.067</td>
</tr>
<tr>
<td>i L5 : T5</td>
<td>1.143</td>
<td>1.209 ± 0.071</td>
<td>1.081</td>
<td>1.368</td>
</tr>
<tr>
<td>L10 (mm)</td>
<td>0.082</td>
<td>0.074 ± 0.005</td>
<td>0.066</td>
<td>0.084</td>
</tr>
<tr>
<td>T10 (mm)</td>
<td>0.073</td>
<td>0.073 ± 0.003</td>
<td>0.067</td>
<td>0.081</td>
</tr>
<tr>
<td>i L10 : T10</td>
<td>1.125</td>
<td>1.021 ± 0.058</td>
<td>0.945</td>
<td>1.154</td>
</tr>
<tr>
<td>LC (mm)</td>
<td>0.61</td>
<td>0.57 ± 0.022</td>
<td>0.54</td>
<td>0.61</td>
</tr>
<tr>
<td>TO (mm)</td>
<td>0.65</td>
<td>0.62 ± 0.024</td>
<td>0.58</td>
<td>0.66</td>
</tr>
<tr>
<td>TTe (mm)</td>
<td>0.62</td>
<td>0.56 ± 0.035</td>
<td>0.49</td>
<td>0.62</td>
</tr>
<tr>
<td>LO (mm)</td>
<td>0.27</td>
<td>0.26 ± 0.014</td>
<td>0.24</td>
<td>0.29</td>
</tr>
<tr>
<td>LTe (mm)</td>
<td>0.25</td>
<td>0.23 ± 0.022</td>
<td>0.20</td>
<td>0.28</td>
</tr>
<tr>
<td>i LC : TO</td>
<td>0.94</td>
<td>0.92 ± 0.019</td>
<td>0.89</td>
<td>0.97</td>
</tr>
<tr>
<td>i TO : TTe</td>
<td>1.04</td>
<td>1.11 ± 0.044</td>
<td>1.03</td>
<td>1.22</td>
</tr>
<tr>
<td>i LO : TTe</td>
<td>1.07</td>
<td>1.15 ± 0.090</td>
<td>0.97</td>
<td>1.27</td>
</tr>
<tr>
<td>i LC : LP</td>
<td>0.84</td>
<td>0.83 ± 0.024</td>
<td>0.79</td>
<td>0.88</td>
</tr>
<tr>
<td>i TO : TP</td>
<td>0.97</td>
<td>1.00 ± 0.019</td>
<td>0.97</td>
<td>1.05</td>
</tr>
<tr>
<td>i LP : TP</td>
<td>1.10</td>
<td>1.11 ± 0.024</td>
<td>1.06</td>
<td>1.16</td>
</tr>
<tr>
<td>LP (mm)</td>
<td>0.73</td>
<td>0.69 ± 0.032</td>
<td>0.62</td>
<td>0.74</td>
</tr>
<tr>
<td>TP (mm)</td>
<td>0.66</td>
<td>0.62 ± 0.030</td>
<td>0.55</td>
<td>0.66</td>
</tr>
<tr>
<td>i LE:TP</td>
<td>1.30</td>
<td>1.29 ± 0.029</td>
<td>1.24</td>
<td>1.34</td>
</tr>
<tr>
<td>i TE : TP</td>
<td>1.30</td>
<td>1.33 ± 0.029</td>
<td>1.27</td>
<td>1.38</td>
</tr>
<tr>
<td>LE (mm)</td>
<td>0.95</td>
<td>0.89 ± 0.038</td>
<td>0.81</td>
<td>0.95</td>
</tr>
<tr>
<td>TE (mm)</td>
<td>0.86</td>
<td>0.82 ± 0.042</td>
<td>0.74</td>
<td>0.90</td>
</tr>
<tr>
<td>i LE : TE</td>
<td>1.09</td>
<td>1.08 ± 0.025</td>
<td>1.03</td>
<td>1.12</td>
</tr>
<tr>
<td>LA (mm)</td>
<td>0.64</td>
<td>0.61 ± 0.027</td>
<td>0.56</td>
<td>0.69</td>
</tr>
<tr>
<td>TA (mm)</td>
<td>0.091</td>
<td>0.085 ± 0.011</td>
<td>0.049</td>
<td>0.098</td>
</tr>
<tr>
<td>TAPr (mm)</td>
<td>0.055</td>
<td>0.050 ± 0.006</td>
<td>0.028</td>
<td>0.056</td>
</tr>
<tr>
<td>LPm (mm)</td>
<td>0.445</td>
<td>0.433 ± 0.015</td>
<td>0.402</td>
<td>0.459</td>
</tr>
<tr>
<td>DA-Pm (mm)</td>
<td>0.073</td>
<td>0.068 ± 0.006</td>
<td>0.053</td>
<td>0.077</td>
</tr>
<tr>
<td>i (DA-Pm) : LPm</td>
<td>0.163</td>
<td>0.157 ± 0.012</td>
<td>0.122</td>
<td>0.175</td>
</tr>
</tbody>
</table>
Chaetotaxic formula (for explanation see UHLIG (1988) and UHLIG & WATANABE (1992)):
Valve = 0 : 0 : 0 : x2(1-3)
 y1 : y2 : y3α,β(γ,δ) : y4 : y5α(β) : y6 : y7(15-19)
 z1 : z2 : 0 : 0.

Valval chaetotaxy consists of digging spines, bristles and fine setae. Digging spines: z1, y2. Large and strong bristles: y3(α),β, y4, y5α. Large and thin bristles: z2, y3(α)(γ,δ), y5(β). Fine setae: All others.

Measurements, indices and variability. See Table 2. The elytra of one paratype are yellow without any dark spot.

Differential diagnosis. Erichsonius jelineki sp. nov. belongs to the subgenus Sectophilonthus Tottenham, 1949 with fully developed wings. The new species differs from other Erichsonius species by the combination of following characters:
• medium-sized: length 3.7–4.9 mm, anterior body length 2.0–2.4 mm;
• body pitchy brown to almost black, elytra yellow, usually with distinct but vaguely delimited black spot on each elytron;
• eyes as long as to distinctly longer than temples (eye/temple length index i LO : LTe = 0.97–1.33);
• head slightly shorter than wide measured across eyes (i LC : TO = 0.89–0.97);
• pronotum width TP = 0.55–0.71 mm;
• pronotum slightly longer than wide (length/width index of pronotum i LP : TP = 1.06–1.16);
• interior puncture series of pronotum with 1+6 to 1+9 punctures;
• elytra longer than wide (length/width index of elytra i LE : TE = 1.03–1.12);
• tergite VII with complete membranous palisade fringe at posterior margin;
• aedeagus with parameral side facing ventrally when in rest (rest position 0°);
• parameres distinctly exceeding apex of aedeagus (i (DA-Pm) : LPm = +0.122 to +0.175);
• parameres with neither peg setae nor apical setae but with hairs at inner side of apical dilatation;
• valves with digging spines z1 and y2;
• sexual characters, e.g. shape of aedeagus, structures of internal sac, shape and chaetotaxy of tergum X and sterna VIII and IX in males and shape and chaetotaxy of tergum X and valves in females as in Figs. 1–30.

Remarks and comparisons. Because about two thirds of all described Erichsonius species are poorly described and not attributed to either a species group or a subgenus, it is necessary to distinguish any new species from all Erichsonius of both subgenera and the “species incertae sedis”. Rather complete and useful identification keys are available only for the Nearctic region (FRANK 1975, 1981), for the West Palaearctic region (COIFFAIT 1965, 1974) including Central Europe (UHLIG & STERRENBURG 1990 and UHLIG 1989b) and for Japan (UHLIG & WATANABE 1992). BERNHAUER’S key (1944) to the Palaearctic species covers less than half and TOTTENHAM’s key (1956) to the continental Afrotropical species covers less than one fifth
1 – aedeagus with internal sac, ventral; 2 – aedeagus, 1/3 lateral; 3 – aedeagus, lateral; 4 – apex of median lobe, dorsal; 5, 8 – male sternite IX; 6 – male tergite IX/X (right tergo-stylus and bristles omitted); 7 – male tergite X.
Scale bar = 0.2 mm.

Figs. 1–8, *Erichsonius jelineki* sp. nov. (1–3, 5–8 – male paratypes, Trois Frères; 4 – male paratype, Pied du Morne).
1 – aedeagus with internal sac, ventral; 2 – aedeagus, 1/3 lateral; 3 – aedeagus, lateral; 4 – apex of median lobe, dorsal; 5, 8 – male sternite IX; 6 – male tergite IX/X (right tergo-stylus and bristles omitted); 7 – male tergite X.
Scale bar = 0.2 mm.
Figs. 9–14. *Erichsonius jelineki* sp. nov. (9–10 – male paratypes, Trois Frères; 11–14 – female paratypes, Trois Frères). 9 – apex of male sternite VIII; 10 – apex of male sternite VIII (bristles omitted); 11 – female tergite IX/X (right tergo-stylus and bristles omitted); 12 – female tergite X; 13, 14 – valves. Scale bar = 0.2 mm.
Figs. 15–21. *Erichsonius jelineki* sp. nov., all Trois Frères. 15, 17–21 – aedeagi, ventral; 16 – aedeagus, 1/3 lateral; 19, 20 – tubus with internal sac and parameres; 21 – apical part of aedeagus and parameres. (15, 16 – HT; 17, 20 – ♂ PT2, transmitted light; 18, 19, 21 – ♀ PT1, transmitted light).
Figs. 22–30. *Erichsonius jelineki* sp. nov., all Trois Frères. 22 – sternite VIII; 23 – sternite IX; 24 – tergite X; 25–27 – tergite X and partly tergite(s) IX; 28–30 – valve(s) and partly tergites IX. (22–24 – ♂ PT2; 25, 28 – ♀ PT3; 26, 29 – ♀ PT1; 27, 30 – ♀ PT2).
Figs. 31–36. Erichsonius jelineki sp. nov., all Trois Frères. 31 – ♀ PT3, left antenna. 32–34 – ♂ PT1; 32 – head; 33 – pronotum; 34 – elytra. 35–36 – holotype; 35 – mounting plate with holotype specimen, mounted aedeagus and genital segment; 36 – labels.
Fig. 37. Mount Trois Frères. Arrow indicates the type locality of *Erichsonius jelineki* sp. nov.

Fig. 38. Mount Trois Frères, the type locality of *Erichsonius jelineki* sp. nov. Arrows indicate the places at which the specimens were collected.
of the currently described species of the respective region, not to mention some hundreds of undescribed species. There are no identification keys for the Oriental Region, Madagascar and the islands in the Indian Ocean but Mauritius (UHLIG 1988). Only the Nearctic, West Palaearctic and Japanese species are completely grouped in subgenera and species groups. Phylogenetic and comparative taxonomic studies were published only for the Afrotropical *Erichsonius robustus* group (MASCH 1993, MASCH & UHLIG 1990).

Because most of the *Erichsonius* species have, contrary to the new species from the Seychelles, completely dark elytra and eyes shorter than temples, the new species should be distinguished in more detail from species with black-spotted or completely yellow, red or reddish-brown elytra and from species with eyes longer than temples. *Erichsonius* (**S**.) *jelineki* sp. nov. differs from other *Erichsonius* species with black-spotted or completely yellow, red to reddish-brown elytra by the following characters:

- larger eyes (the following species have eyes shorter than temples: *E. basalis* (Motschulsky, 1858) and *E. castaneipennis* (Kraatz, 1859), *E. (?*) *comorensis* Uhlig, 1991, *E. (*S.*) *hannemannii* Uhlig, 1990, *E. humeralis* Cameron, 1920, *E. (?) *naomii* Uhlig & Watanabe, 1992, *E. uhligi* Lecoq, 1996, and all Palaearctic and Nearctic species with pale elytral colour);
- longer elytra (*E. franzi* Lecoq, 1990 has elytra shorter than pronotum);
- narrower pronotum (*E. rufipennis* Bernhauer, 1932) and *E. variolosus* Tottenham, 1956, have pronotum wider than 0.74 mm);
- fewer punctures in the inner puncture series of pronotum (*E. tristis* Cameron, 1932) and *E. venustus* Tottenham, 1956 have more than 1+10 punctures);
- less densely punctuate head, pronotum and elytra, and different aedeagus (*E. gentyi* Levasseur, 1969 has parameres not distinctly exceeding top of median lobe but *E. bamakoensis* Levasseur, 1969, has a pointed aedeagus without protuberance).

Erichsonius (**S**.) *jelineki* sp. nov. differs from other *Erichsonius* species with eyes longer than temples by the following characters:

The new species should also be compared with the following three species from the Oriental Region.

- *E. flavicornis* (Fauvel, 1895) has pitchy brown elytra with yellowish-brown shoulders, suture and posterior margin and aedeagus in distal half with a median keel dilated in an oval, pointed protuberance;
- *E. laticeps* (Cameron, 1918) has pitchy brown elytra and aedeagus without protuberance;
- *E. humeralis* (Cameron, 1920) has pitchy brown elytra with reddish shoulders and suture and a similar aedeagus with parameres distinctly exceeding the top of median lobe and forceps-shaped in apical half (but the parameres are more strongly dilated and somewhat twisted along longitudinal axis) and median lobe apically with broad protuberance forming a rounded rhomboidal apical piece. However, eyes are distinctly shorter than temples.

Etymology. This new species is dedicated to Dr. Josef Jelinek from the Department of Entomology, National Museum, Prague (Czech Republic), on the occasion of his 70th birthday.

Distribution. *Erichsonius (S.) jelineki* sp. nov. is known from four localities on the Mahé Island (Seychelles) only (Figs. 37, 38).

Relationships. According to the available data, the new species is phylogenetically close to the Oriental species of *Erichsonius*.

Acknowledgements

We are obliged to Bernd Jaeger (Museum of Natural History, Berlin, Germany) for his immense support with photographs and arranging the plates. Alexey Solodovnikov (Copenhagen, Denmark) and David J. Clarke (Auckland, New Zealand) provided critical comments as referees and Lee Herman (New York, USA) and Martin Fikáček (Prague, Czech Republic) read the final version of the manuscript. Their support is gratefully acknowledged.

References

